Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Immuno ; 2(2):344-371, 2022.
Article in English | MDPI | ID: covidwho-1820300

ABSTRACT

The pathogenesis of COVID-19 is complicated by immune dysfunction. The impact of immune-based therapy in COVID-19 patients has been well documented, with some notable studies on the use of anti-cytokine medicines. However, the complexity of disease phenotypes, patient heterogeneity and the varying quality of evidence from immunotherapy studies provide problems in clinical decision-making. This review seeks to aid therapeutic decision-making by giving an overview of the immunological responses against COVID-19 disease that may contribute to the severity of the disease. We have extensively discussed theranostic methods for COVID-19 detection. With advancements in technology, bioinformatics has taken studies to a higher level. The paper also discusses the application of bioinformatics and machine learning tools for the diagnosis, vaccine design and drug repurposing against SARS-CoV-2.

2.
2021 SC Workshops Supplementary, SCWS 2021 ; : 79-86, 2021.
Article in English | Scopus | ID: covidwho-1794800

ABSTRACT

Complex flow simulations are conventionally performed on HPC clusters. However, the limited availability of HPC resources and steep learning curve of executing on traditional supercomputer infrastructure has drawn attention towards deploying flow simulation software on the cloud. We showcase how a complex computational framework-that can evaluate COVID-19 transmission risk in various indoor classroom scenarios-can be ed and deployed on cloud services. The availability of such cloud-based personalized planning tools can enable educational institutions, medical institutions, public sector workers (courthouses, police stations, airports, etc.), and other entities to comprehensively evaluate various in-person interaction scenarios for transmission risk. We deploy the simulation framework on the Azure cloud framework, utilizing the Dendro-ktmesh generation tool and PETSc solvers. The cloud ion is provided by RocketML cloud infrastructure. We compare the performance of the cloud machines with state-of-the-art HPC machine TACC Frontera. Our results suggest that cloud-based HPC resources are a viable strategy for a diverse array of end-users to rapidly and efficiently deploy simulation software. © 2021 IEEE.

3.
J Neuroophthalmol ; 42(2): 251-255, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1596393

ABSTRACT

BACKGROUND: The opsoclonus-myoclonus-ataxia syndrome (OMAS) represents a pathophysiology and diagnostic challenge. Although the diverse etiologies likely share a common mechanism to generate ocular, trunk, and limb movements, the underlying cause may be a paraneoplastic syndrome, as the first sign of cancer, or may be a postinfectious complication, and thus, the outcome depends on identifying the trigger mechanism. A recent hypothesis suggests increased GABAA receptor sensitivity in the olivary-oculomotor vermis-fastigial nucleus-premotor saccade burst neuron circuit in the brainstem. Therefore, OMAS management will focus on immunosuppression and modulation of GABAA hypersensitivity with benzodiazepines. METHODS: We serially video recorded the eye movements at the bedside of 1 patient with SARS-CoV-2-specific Immunoglobulin G (IgG) serum antibodies, but twice-negative nasopharyngeal reverse transcription polymerase chain reaction (RT-PCR). We tested cerebrospinal fluid (CSF), serum, and nasopharyngeal samples. After brain MRI and chest, abdomen, and pelvis CT scans, we treated our patient with clonazepam and high-dose Solu-MEDROL, followed by a rituximab infusion after her formal eye movement analysis 10 days later. RESULTS: The recordings throughout her acute illness demonstrated different eye movement abnormalities. While on high-dose steroids and clonazepam, she initially had macrosaccadic oscillations, followed by brief ocular flutter during convergence the next day; after 10 days, she had bursts of opsoclonus during scotopic conditions with fixation block but otherwise normal eye movements. Concern for a suboptimal response to high-dose Solu-MEDROL motivated an infusion of rituximab, which induced remission. An investigation for a paraneoplastic etiology was negative. CSF testing showed elevated neuron-specific enolase. Serum IgG to Serum SARS-CoV2 IgG was elevated with negative RT-PCR nasopharyngeal testing. CONCLUSION: A recent simulation model of macrosaccadic oscillations and OMAS proposes a combined pathology of brainstem and cerebellar because of increased GABAA receptor sensitivity. In this case report, we report 1 patient with elevated CSF neuronal specific enolase, macrosaccadic oscillations, ocular flutter, and OMAS as a SARS-CoV-2 postinfectious complication. Opsoclonus emerged predominantly with fixation block and suppressed with fixation, providing support to modern theories on the mechanism responsible for these ocular oscillations involving cerebellar-brainstem pathogenesis.


Subject(s)
COVID-19 , Cerebellar Ataxia , Ocular Motility Disorders , Opsoclonus-Myoclonus Syndrome , COVID-19/complications , Cerebellar Ataxia/complications , Clonazepam/therapeutic use , Female , Humans , Immunoglobulin G , Methylprednisolone Hemisuccinate/therapeutic use , Ocular Motility Disorders/diagnosis , Ocular Motility Disorders/drug therapy , Ocular Motility Disorders/etiology , Opsoclonus-Myoclonus Syndrome/diagnosis , Opsoclonus-Myoclonus Syndrome/drug therapy , Opsoclonus-Myoclonus Syndrome/etiology , RNA, Viral/therapeutic use , Receptors, GABA-A/therapeutic use , Rituximab/therapeutic use , SARS-CoV-2
4.
J Biomol Struct Dyn ; 39(14): 5033-5047, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574027

ABSTRACT

COVID-19 has ravaged the world and is the greatest of pandemics in human history, in the absence of treatment or vaccine the mortality and morbidity rates are very high. The present investigation was undertaken to screen and identify the potent leads from the Indian Ayurvedic herb, Asparagus racemosus (Willd.) against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. Asparoside-C, Asparoside-D and Asparoside -F were found to be most effective against both the proteins as confirmed through their docking score and affinity. Further, the 100 ns molecular dynamics study also confirmed the potential of these compounds from reasonably lower root mean square deviations and better stabilization of Asparoside-C and Asparoside-F in spike receptor-binding domain and NSP15 Endoribonuclease respectively. MM-GBSA based binding free energy calculations also suggest the most favourable binding affinities of Asparoside-C and Asparoside-F with binding energies of -62.61 and -55.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. HighlightsAsparagus racemosus have antiviral potentialPhytochemicals of Shatavari showed promising in-silico docking and MD resultsAsparaoside-C and Asparoside-F has good binding with target proteinsAsparagus racemosus holds promise as SARS-COV-2 (S) and (N) proteins inhibitor Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , SARS-CoV-2
5.
33rd International Conference for High Performance Computing, Networking, Storage and Analysis: Science and Beyond, SC 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1551078

ABSTRACT

Efficiently and accurately simulating partial differential equations (PDEs) in and around arbitrarily defined geometries, especially with high levels of adaptivity, has significant implications for different application domains. A key bottleneck in the above process is the fast construction of a good adaptively-refined mesh. In this work, we present an efficient novel octree-based adaptive discretization approach capable of carving out arbitrarily shaped void regions from the parent domain: An essential requirement for fluid simulations around complex objects. Carving out objects produces an incomplete octree. We develop efficient top-down and bottom-up traversal methods to perform finite element computations on incomplete octrees.We validate the framework by (a) showing appropriate convergence analysis and (b) computing the drag coefficient for flow past a sphere for a wide range of Reynolds numbers (O(1106)) encompassing the drag crisis regime. Finally, we deploy the framework on a realistic geometry on a current project to evaluate COVID-19 transmission risk in classrooms. © 2021 IEEE Computer Society. All rights reserved.

7.
J Biomol Struct Dyn ; 39(12): 4510-4521, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317843

ABSTRACT

COVID-19 has ravaged the world and is the greatest of pandemics in modern human history, in the absence of treatment or vaccine, the mortality and morbidity rates are very high. The present investigation identifies potential leads from the plant Withania somnifera (Indian ginseng), a well-known antiviral, immunomodulatory, anti-inflammatory and a potent antioxidant plant, using molecular docking and dynamics studies. Two different protein targets of SARS-CoV-2 namely NSP15 endoribonuclease and receptor binding domain of prefusion spike protein from SARS-CoV-2 were targeted. Molecular docking studies suggested Withanoside X and Quercetin glucoside from W. somnifera have favorable interactions at the binding site of selected proteins, that is, 6W01 and 6M0J. The top-ranked phytochemicals from docking studies, subjected to 100 ns molecular dynamics (MD) suggested Withanoside X with the highest binding free energy (ΔGbind = -89.42 kcal/mol) as the most promising inhibitor. During MD studies, the molecule optimizes its conformation for better fitting with the receptor active site justifying the high binding affinity. Based on proven therapeutic, that is, immunomodulatory, antioxidant and anti-inflammatory roles and plausible potential against n-CoV-2 proteins, Indian ginseng could be one of the alternatives as an antiviral agent in the treatment of COVID 19. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Panax , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
8.
Phytomed Plus ; 1(3): 100095, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1309364

ABSTRACT

Background: Since December 2019, SARS-CoV-2 had been a significant threat globally, which has accounted for about two million deaths. Several types of research are undergoing and have reported the significant role of repurposing existing drugs and natural lead in the treatment of COVID-19. The plant Phyllanthus emblica (Synonym-Emblica officinalis) (Euphorbiaceae) is a rich source of vitamin C, and its use as an antiviral agent has been well established. Purpose: The present study was undertaken to investigate the potency of the several components of Phyllanthus emblica against three protein targets of 2019-nCoV viz. NSP15 endoribonuclease, main protease, and receptor binding domain of prefusion spike protein using molecular docking and dynamics studies. Methods: The docking simulation studies were carried out using Schrödinger maestro 2018-1 MM share version, while dynamics studies were conducted to understand the binding mechanism and the complexes' stability studies. Results: Out of sixty-six tested compounds, Chlorogenic acid, Quercitrin, and Myricetin were most effective in showing the highest binding energy against selected protein targets of SARS-CoV-2. The network pharmacology analysis study confirmed these compounds' role in modulating the immune response, inflammatory cascade, and cytokine storm through different signaling pathways. Conclusion: Current pharmacoinformatic approach shows possible role of Phyllanthus emblica in the treatment and management of COVID-19.

9.
Geohealth ; 5(7): e2021GH000420, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1269373

ABSTRACT

Wastewater monitoring for virus infections within communities can complement conventional clinical surveillance. Currently, most SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) clinical testing is voluntary and inconsistently available, except for a few occupational and educational settings, and therefore likely underrepresents actual population prevalence. Randomized testing on a regular basis to estimate accurate population-level infection rates is prohibitively costly and is hampered by a range of limitations and barriers associated with participation in clinical research. In comparison, community-level fecal monitoring can be performed through wastewater surveillance to effectively surveil communities. However, epidemiologically defined protocols for wastewater sample site selection are lacking. Herein, we describe methods for developing a geographically resolved population-level wastewater sampling approach in Jefferson County, Kentucky, and present preliminary results. Utilizing this site selection protocol, samples (n = 237) were collected from 17 wastewater catchment areas, September 8 to October 30, 2020 from one to four times per week in each area and compared to concurrent clinical data aggregated to wastewater catchment areas and county level. SARS-CoV-2 RNA was consistently present in wastewater during the studied period, and varied by area. Data obtained using the site selection protocol showed variation in geographically resolved wastewater SARS-CoV-2 RNA concentration compared to clinical rates. These findings highlight the importance of neighborhood-equivalent spatial scales and provide a promising approach for viral epidemic surveillance, thus better guiding spatially targeted public health mitigation strategies.

10.
Indian J Pediatr ; 88(9): 899-904, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1146195

ABSTRACT

OBJECTIVE: To study the impact of coronavirus disease 2019 (COVID-19) pandemic on the utilization of pediatric cardiac care services and to determine the role of teleconsultation services in delivering healthcare in this subset of population. METHODS: It was a retrospective, observational study. All children who attended pediatric cardiology outpatient/teleconsultation services or were admitted to pediatric cardiology ward between April 1, 2019 to July 31, 2019 and April 1, 2020 to July 31, 2020, were recruited in the study. Data for patients who underwent surgery or catheter intervention for congenital heart disease were also recorded and analyzed. Comparisons were drawn between the statistics during the two time-periods. RESULTS: Physical outpatient services were discontinued and were replaced by teleconsultations from April 2020. Inpatient admissions during COVID-19 pandemic (n = 66) decreased by two-thirds as compared to the admissions during similar period in 2019 (n = 189). Similarly, the percentage decrease during these 4 mo of pandemic were 84% for catheter interventions, 90% for total congenital heart disease (CHD) surgeries, and 40% for emergency CHD surgeries. The number of patients availing successful teleconsultation was 1079, which was only 15% of the total number of patients attending physical outpatient services (n = 7176) during the corresponding period in the year 2019. During the pandemic, systematic teleconsultation and local evaluation and investigations aided in better management of patients with CHD. CONCLUSIONS: The utilization of cardiovascular services for CHD has reduced significantly during COVID-19 pandemic, for both out- and inpatient care. Teleconsultation services have streamlined the follow-up care to some extent and have helped in noncontact triaging of these patients for further care.


Subject(s)
COVID-19 , Heart Defects, Congenital , Child , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/therapy , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
11.
Indian J Crit Care Med ; 24(11): 1106-1113, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1116792

ABSTRACT

PURPOSE: The present study systematically searched important medical databases, assessed the quality of available pieces of evidence, and performed a meta-analysis to test the efficacy of different therapeutic options currently available for treating COVID-19. MATERIALS AND METHODS: PubMed, CNKI, LILACS, Koreamed, WHO clinical trial registry, and medRxiv were searched since December 2019. Any observational or controlled study that tested the efficacy of any pharmacological intervention in COVID-19 patients either prospectively or retrospectively was included in the qualitative analysis. We assessed outcomes as dichotomous variables, i.e., a patient having a positive clinical outcome. Relative risks/risk ratios (RR) having a 95% confidence interval (CI) were derived. Studies conforming to inclusion criteria were pooled using the random-effect model. RESULTS: Nine trials on hydroxychloroquine (HCQ), six studies on antiviral, four studies on monoclonal antibodies, two on corticosteroids, two on convalescent plasma (CP), and one on interferon-α2b were included in the systematic review. Meta-analysis containing six scientific trials and analyzing 522 patients revealed that the relative risk of positive clinical outcomes with HCQ treatment was 1.042 (95% CI, 0.884 to 1.874) with a number needed to treat (NNT) of 12.6. A meta-analysis of two studies analyzing 285 patients showed that the relative risk of clinical resolution with lopinavir and ritonavir combination was 1.152 (95% CI 0.709 to 1.87). Out of various antiviral used, the only remdesivir showed a positive result in a case series. Monoclonal antibodies showed decreased C-reactive protein, decreased oxygen, and ventilator requirements. A corticosteroid may increase mortality with increased dose. Two small case series on CP showed some promising results. CONCLUSION: The study showed slightly favorable results with HCQ, monoclonal antibodies, remdesivir, and CP in treating COVID-19 patients. Further research is warranted in establishing the efficacy of studied interventions. PROSPERO IDENTIFIER: CRD42020180979. HOW TO CITE THIS ARTICLE: Choupoo NS, Das SK, Haldar R, Sarkar H, Tewari R, Ray S. Evaluating the Efficacy and Safety of the Existing Repurposed Pharmacological Agents for Treating COVID-19: A Meta-analysis and Systematic Review of Clinical Trials. Indian J Crit Care Med 2020;24(11):1106-1113.

12.
Mol Divers ; 25(3): 1889-1904, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1046729

ABSTRACT

Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.


Subject(s)
COVID-19 Drug Treatment , Molecular Docking Simulation , Molecular Dynamics Simulation , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Humans , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Protein Domains , Saponins/metabolism , Saponins/therapeutic use
13.
Comb Chem High Throughput Screen ; 24(4): 591-597, 2021.
Article in English | MEDLINE | ID: covidwho-721424

ABSTRACT

AIM AND OBJECTIVE: At present, the world is facing a global pandemic threat of SARSCoV- 2 or COVID-19 and to date, there are no clinically approved vaccines or antiviral drugs available for the treatment of coronavirus infections. Studies conducted in China recommended the use of liquorice (Glycyrrhiza species), an integral medicinal herb of traditional Chinese medicine, in the deactivation of COVID-19. Therefore, the present investigation was undertaken to identify the leads from the liquorice plant against COVID-19 using molecular docking simulation studies. MATERIALS AND METHODS: A set of reported bioactive compounds of liquorice were investigated for COVID-19 main protease (Mpro) inhibitory potential. The study was conducted on Autodock vina software using COVID-19 Mpro as a target protein having PDB ID: 6LU7. RESULTS: Out of the total 20 docked compounds, only six compounds showed the best affinity towards the protein target, which included glycyrrhizic acid, isoliquiritin apioside, glyasperin A, liquiritin, 1-methoxyphaseollidin and hedysarimcoumestan B. From the overall observation, glycyrrhizic acid followed by isoliquiritin apioside demonstrated the best affinity towards Mpro representing the binding energy of -8.6 and -7.9 Kcal/mol, respectively. Nevertheless, the other four compounds were also quite comparable with the later one. CONCLUSION: From the present investigation, we conclude that the compounds having oxane ring and chromenone ring substituted with hydroxyl 3-methylbut-2-enyl group could be the best alternative for the development of new leads from liquorice plant against COVID-19.


Subject(s)
Coronavirus 3C Proteases/drug effects , Glycyrrhiza/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/isolation & purification , Protease Inhibitors/therapeutic use , SARS-CoV-2/metabolism
14.
J Biomol Struct Dyn ; 39(13): 4686-4700, 2021 08.
Article in English | MEDLINE | ID: covidwho-603682

ABSTRACT

At present, the world is facing a pandemic named as COVID-19, caused by SARS-CoV-2. Traditional Chinese medicine has recommended the use of liquorice (Glycyrrhiza species) in the treatment of infections caused by SARS-CoV-2. Therefore, the present investigation was carried out to identify the active molecule from the liquorice against different protein targets of COVID-19 using an in-silico approach. The molecular docking simulation study of 20 compounds along with two standard antiviral drugs (Lopinavir and Rivabirin) was carried out with the help of Autodock vina software using two protein targets from COVID-19 i.e. spike glycoprotein (PDB ID: 6VSB) and Non-structural Protein-15 (Nsp15) endoribonuclease (PDB ID: 6W01). From the observed binding energy and the binding interactions, glyasperin A showed high affinity towards Nsp15 endoribonuclease with uridine specificity, while glycyrrhizic acid was found to be best suited for the binding pocket of spike glycoprotein and also prohibited the entry of the virus into the host cell. Further, the dynamic behavior of the best-docked molecules inside the spike glycoprotein and Nsp15 endoribonuclease were explored through all-atoms molecular dynamics (MD) simulation study. Several parameters from the MD simulation have substantiated the stability of protein-ligand stability. The binding free energy of both glyasperin A and glycyrrhizic acid was calculated from the entire MD simulation trajectory through the MM-PBSA approach and found to high binding affinity towards the respective protein receptor cavity. Thus, glyasperin A and glycyrrhizic acid could be considered as the best molecule from liquorice, which could find useful against COVID-19. Communicated by Ramaswamy H. Sarma.


Subject(s)
Glycyrrhiza , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , COVID-19 , Glycoproteins , Glycyrrhiza/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
15.
J Biomol Struct Dyn ; 39(9): 3244-3255, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-141733

ABSTRACT

The Public Health Emergency of International Concern declared the widespread outbreak of SARS-CoV-2 as a global pandemic emergency, which has resulted in 1,773,086 confirmed cases including 111,652 human deaths, as on 13 April 2020, as reported to World Health Organization. As of now, there are no vaccines or antiviral drugs declared to be officially useful against the infection. Saikosaponin is a group of oleanane derivatives reported in Chinese medicinal plants and are described for their anti-viral, anti-tumor, anti-inflammatory, anticonvulsant, antinephritis and hepatoprotective activities. They have also been known to have anti-coronaviral property by interfering the early stage of viral replication including absorption and penetration of the virus. Thus, the present study was undertaken to screen and evaluate the potency of different Saikosaponins against different sets of SARS-CoV-2 binding protein via computational molecular docking simulations. Docking was carried out on a Glide module of Schrodinger Maestro 2018-1 MM Share Version on NSP15 (PDB ID: 6W01) and Prefusion 2019-nCoV spike glycoprotein (PDB ID: 6VSB) from SARS-CoV-2. From the binding energy and interaction studies, the Saikosaponins U and V showed the best affinity towards both the proteins suggesting them to be future research molecule as they mark the desire interaction with NSP15, which is responsible for replication of RNA and also with 2019-nCoV spike glycoprotein which manage the connection with ACE2. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycoproteins , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Oleanolic Acid/analogs & derivatives , Saponins , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL